全固态 561 nm 倍频激光器研究

邵志强 高兰兰 张 辰

(长春理工大学理学院,吉林长春 130022)

摘要 报道了利用激光二极管端面抽运 Nd:YAG 晶体,通过 LBO 非线性晶体腔内倍频实现的 561 nm 激光输出。 LBO 晶体尺寸为 2 mm×2 mm×10 mm,采用 I 类相位匹配切割。抽运功率为 5 W 时,561 nm 的最大输出功率为 123 mW,此时的光-光转换效率为 2.46%。实验中发现激光器很容易同时出现 556 nm 及 558 nm 倍频光。从非线 性转换效率对基频光振荡的影响角度出发,分析了1112 nm与 1116 nm 谱线起振的原因。作为对比,利用允许角范 围小的 KTP 作为倍频晶体进行了同样的实验,KTP 晶体的尺寸为 2 mm×2 mm×8 mm,采用 II 类相位匹配切割。 实验结果显示,在 KTP 晶体倍频情况下,激光器很容易实现 561 nm 单谱线激光输出。实验结果与理论分析相 一致。

关键词 激光器;561 nm;谱线竞争;KTP 晶体;LBO 晶体
 中图分类号 TN248.1
 文献标识码 A
 doi: 10.3788/LOP50.031401

Research on 561 nm Frequency-Double All-Solid-State Laser

Shao Zhiqiang Gao Lanlan Zhang Chen

(College of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China)

Abstract 561 nm laser output is achieved from LBO intra-cavity frequency doubling of a laser in which Nd: YAG is end-pumped by LD. Using the 2 mm \times 2 mm \times 10 mm LBO crystal with type-I phase matching cutting, the 561 nm laser output power is 123 mW when the pump power is 5 W. The conversion efficiency of 2.46% is obtained. The frequency-doubled light waves of 556 nm and 558 nm easily appear in experiment. From the influence of nonlinear conversion efficiency on fundamental-frequency light oscillation, the reason of 1112 nm and 1116 nm line oscillation is analyzed. As a contrast, we carry out the same experiment using a 2 mm \times 2 mm \times 8 mm KTP crystal with type-II phase matching cutting. Results show that the laser is easy to realized 561 nm single spectral-line laser. The experimental results and theoretical analysis are consistent with each other.

Key words lasers; 561 nm; spectral-line competition; KTP crystal; LBO crystal OCIS codes 140.7260; 140.3570; 140.2020; 230.5298

1 引 言

近年来,人们对 Nd: YAG 的1123 nm 谱线产生了浓厚的兴趣。1123 nm 激光器可以作为掺铥光纤的抽运源,通过上转换得到 481 nm 的蓝光输出;同时 1123 nm 的倍频光—— 561 nm 黄绿光在生物医学方面有着极大的用途,它是共焦显微镜、流式细胞仪及其他生物成像装置的理想光源,同时也是激光治疗复杂眼科疾病的最佳波长^[1]。

2004年,Guo 等^[2]报道了 1123 nm 的连续输出,在抽运功率为 1.57 W 时,输出 1123 nm 功率 132 mW。 采用周期性极化铌酸锂(PPLN)腔外倍频,观察到了微弱的黄光。2006年,Jia 等^[3]报道了 561 nm 连续输出,在抽运功率为 10 W 时,得到了 1.2 W 的 561 nm 黄绿光。2012年,崔锦江等^[4]采用半导体激光抽运腔

收稿日期: 2012-11-12; 收到修改稿日期: 2012-12-05 网络出版日期: 2013-02-05

基金项目:长春市科技局项目(2011101)和汽车仿真与控制国家重点实验室开放基金(2011108)资助课题。

作者简介: 邵志强(1991—),男,硕士研究生,主要从事全固态激光技术及非线性频率变换技术等方面的研究。 E-mail: 1871502077@qq. com

导师简介:高兰兰(1974—),女,博士,副研究员,主要从事非线性光学和全固态激光器等方面的研究。 E-mail:gll_75@163.com 内倍频的方法,获得了可满足医疗应用的瓦级全固态 561 nm 黄绿光激光输出。但是目前国内外有关毫瓦 级 561 nm 黄绿光的报道还比较少。

本文利用 5 W 的激光二极管(LD)抽运 Nd:YAG 晶体产生1123 nm 的基频光,然后在谐振腔中插入 2 mm×2 mm×10 mm, I 类相位匹配切割的 LBO 晶体进行腔内倍频,获得 123 mW 的 561 nm 黄绿光输出。在实验过程中发现激光器的光谱输出很不稳定,很容易同时出现 1112 nm 及 1116 nm 的倍频光即 556 nm和 558 nm 激光输出。从非线性转换效率对基频光振荡的影响角度出发,分析了 1112 nm 与1116 nm 谱线起振的原因。并利用 2 mm×2 mm×8 mm, II 类相位匹配切割的 KTP 晶体进行了对比实验,结果显示,在 KTP 晶体倍频情况下,激光器很容易实现 561 nm 倍频单谱线激光输出。

2 实验装置

实验装置如图 1 所示,LD 为抽运源,其最大输出功率为 5 W,输出中心波长为 808 nm,抽运光经过透镜整形后直接注入到激光介质上。激光介质是 Nd 掺杂原子数分数 1%的 Nd:YAG 晶体,尺寸为 3 mm×3 mm×3 mm,入射面镀有 808 nm 增透膜(透射率 T>90%)和 1123 nm 高反膜(反射率 R>99.8%)。出射

面镀有 1123 nm 增透膜(T>99%)。LBO 晶体两边均镀 有561 nm和 1123 nm 的增透膜(T>99%)。输出耦合镜 的曲率半径为 100 mm,左表面镀有 1123 nm 的高反膜 LD (R>99%)和 1064、1318 nm 的增透膜(T>90%),右表 面镀有 561 nm 的增透膜(T>90%)。LD 用热电制冷器 (TEC)控温,使 LD 发射波长与 Nd:YAG 晶体的吸收波 长吻合。整个谐振腔用一个 TEC 实现精确温控确保激光 器稳定运行。

图 1 实验装置示意图 Fig. 1 Schematic of experimental setup

3 实验结果

将 LBO 晶体放入谐振腔中,调整其放置角度,使得基频光以最佳相位匹配角方向入射,在某一固定角度 放置时得到最大输出功率。固定 LBO 晶体角度,调整 LD 的工作电流,得到如图 2 所示的实验结果。在图 2 中可以看出激光器的输出功率随着抽运功率的增加而升高。激光器的阈值是 0.42 W。相应的注入抽运功 率为 5 W 时,561 nm 输出功率最高为123 mW。此时的光-光转换效率为 2.46%,黄绿光的光束质量因子 $M^2 = 1.1$ 。

结果显示此时激光器输出谱线为单一的 561 nm 谱线。但是,实验中发现谱线输出特性很不稳定, 561 nm、556 nm 及 558 nm 3 条谱线存在较大的竞争,激光器很难保证在较长的时间内固定在 561 nm 单谱 线输出。图 4 是在激光器稳定工作一段时间后,用光谱仪在某一时刻测试的输出光谱图。由图 4 可以看出输出激光束有 3 条谱线:556、558、561 nm,分别对应 1112、1116、1123 nm 的倍频转换。而且,在实验过程中,当调整 LD 的工作电流或者调整晶体的温控时,也会发现输出波长在 556、558、561 nm 之间跳跃性变化。

将倍频晶体换为 KTP 进行了同样的实验,调整 KTP 晶体的放置角度,使得基频光以最佳相位匹配角 方向入射,得到 69 mW 的黄绿光输出。此时的光-光转换效率为 1.38%,光束质量因子 M² = 1.1。然后用 光谱仪测试激光光谱,得到如图 5 所示的实验结果。由图 5 可以看出,在 KTP 晶体倍频情况下,激光器很容 易实现 561 nm 单谱线激光输出,且激光器可以实现 561 nm 单谱线稳定运转。采用 KTP 晶体时激光器的 转换效率比较低,主要原因是 KTP 晶体和 LBO 晶体由不同的公司提供,在质量上存在较大差异。我们曾试 图采用其他公司的 KTP 晶体进行重复实验,但是没有买到,在后续实验中将继续关注。尽管 KTP 晶体转 换效率低,但其对于 1123、1116、1112 nm 3 条谱线倍频过程的有效非线性系数比例及最大允许角不受影响。 因此,这一实验结果对本文的理论分析没有影响。

图 4 LBO 晶体倍频的三波长输出谱线 Fig. 4 Three-wavelength spectrum of frequency doubling output by LBO crystal

图 5 KIP 倍频晶体的输出谱线 Fig. 5 Spectrum of frequency doubling output by KTP crystal

4 理论分析

对于 Nd: YAG 晶体,1123、1116、1112 nm 的受激发射截面相差不到 0.1×10⁻²⁰ m²,并且由于 3 条谱线 波长相差太小,无法通过简单的输出镜镀膜的方法抑制 1116 nm 和 1112 nm 基频光的振荡从而获得 1123 nm谱线单独振荡^[5~7]。因此,在谐振腔中插入倍频晶体后,在倍频晶体的允许角范围内就容易出现 561、556、558 nm 相互竞争的情况。利用 SNLO 软件对 LBO 晶体对特定波长的非线性转换过程的相位匹配 参数进行了计算,计算结果如表 1 所示,其中 *d*_{eff}是非线性晶体的有效非线性系数。

表1 LBO 晶体非线性变换时的相位匹配参数

Second harmonic	Phase matching angle	$d_{ m eff}/(m pm/V)$	Maximum acceptable
generation	$\left[heta / (\circ), \phi / (\circ) ight]$		angle /mrad
1123 nm(o)+1123 nm(o)→561 nm(e)	(90,7.5)	0.836	15.15
1116 nm(o)+1116 nm(o)→558 nm	(90,8)	0.836	14.21
1112 nm(o)+1112 nm(o)→556 nm	(90,8.3)	0.836	13.72

Table 1 Phase matching parameters for nonlinear conversion by LBO crystal

(o) and (e) represents ordinary and extraoridinary light, respectively

从表 1 中可以看出,LBO 晶体在(1123 nm→561 nm),(1116 nm→558 nm)以及(1112 nm→556 nm)倍 频过程的最佳相位匹配角在φ方向依次相差 0.5°和 0.3°,即8.26 mrad和 5.24 mrad,而θ方向相同。3 种频 率变换过程对应的最大允许角分别为 15.15 mrad,14.21 mrad 和 13.72 mrad。

图 6 中的 z_1 , z_2 , z_3 矢量方向分别是(1123 nm→561 nm),(1116 nm→558 nm)和(1112 nm→556 nm)倍 频过程的最佳相位匹配方向^[8,9]。调整 LBO 的放置角度,使得基频光波沿着 z_1 方向入射,根据相位匹配和 倍频转换效率公式^[10]

$$\eta \propto \left[\frac{\sin\left(\frac{\Delta k}{2}\ell\right)}{\frac{\Delta k}{2}\ell} \right]^{2}, \qquad (1)$$
$$\Delta k = \Delta k/_{\theta=\theta_{m}} + \left| \frac{\partial \Delta k}{\partial \theta} \right|_{(\theta=\theta_{m},\varphi=\varphi_{m})} \Delta \theta + \frac{1}{2} \left| \frac{\partial^{2} \Delta k}{\partial \theta^{2}} \right|_{(\theta=\theta_{m},\varphi=\varphi_{m})} (\Delta \theta)^{2} + \cdots, \qquad (2)$$

式中 Δk 为相位矢配量,*l*为非线性晶体的长度, θ , φ 为相位 匹配角, θ_m , φ_m 为最佳相位匹配角。可知此时(1123 nm→ 561 nm)的相位因子平方为最大值 1,频率转换效率达到 最高。但是 z_1 方向距离(1116 nm→558 nm)和(1112 nm →556 nm)倍频过程的最佳匹配方向非常近(8.26 mrad 和 13.5 mrad)。由(1),(2)式可以计算出当光沿着 z_1 方

conversion processes for LBO crystal

向传播时(1116 nm→558 nm)和(1112 nm→556 nm)倍频过程相位因子平方值分别为 69%和 41%,所以在 光谱仪上能观察到 558 nm 和 556 nm 的谱线出现,并且竞争非常激烈。相比而言, z_2 方向比 z_3 方向更接近 z_1 方向,所以在 z_1 方向(1116 nm→558 nm)的相位因子平方值比(1112 nm→556 nm)倍频过程的相位因子 平方值大(69%>41%),这就解释了微调 LD 的工作电流和晶体的温控时在光谱仪上观察到 558 nm 谱线比 556 nm 谱线强的原因。

将倍频晶体换为 KTP,使用 SNLO 软件对 KTP 晶体的特定波长的非线性转换过程的相位匹配参数进行了计算,计算结果如表 2 所示。

|--|

Table 2 Phase matching parameters for nonlinear conversion by KTP crystal

Second harmonic	Phase matching angle	$d_{\rm eff}/({\rm pm/V})$	Maximum acceptable
generation	$\left[heta / (\circ) , \phi / (\circ) ight]$		angle /mrad
1123 nm(o)+1123 nm(e)→561 nm(o)	(75.3,0)	3.69	2.41
1116 nm(o)+1116 nm(e)→558 nm	(76.4,0)	3.72	2.57
1112 nm(o)+1112 nm(e)→556 nm	(77.1,0)	3.74	2.69

(o) and (e) represent ordinary and extraordinary light, respectively.

从表 2 中可以看出 KTP 晶体在(1123 nm→ 561 nm),(1116 nm→558 nm)以及(1112 nm→556 nm) 倍频过程的最佳相位匹配角在 θ 方向依次相差 1.1°和 0.7°,即 19.20 mrad和12.21 mrad, ϕ 方向相同。三种频 率变换过程对应的最大允许角(对于 8 mm 长度的 KTP 晶体)分别为 3.01 mrad, 3.25 mrad和3.36 mrad,远远 小于 3 种频率变换过程最佳相位匹配角之间的夹角。图 7 中的 x_1, x_2, x_3 矢量方向是 KTP 晶体(1123 nm→ 561 nm),(1116 nm→558 nm)和(1112 nm→556 nm)倍频 过程的最佳相位匹配方向。调整 KTP 的放置角度,使得 基频光以 x_1 方向入射时,由(1),(2)式可知,此时 (1123 nm→561 nm)的相位因子平方为最大值 1,频率转 换效率达到最高。但是 x_1 方向距离(1116 nm→

图 7 KTP 晶体 3 种非线性过程的相位匹配角 Fig. 7 Phase matching angles of three nonlinear conversion processes for KTP crystal

558 nm)和(1112 nm→556 nm)倍频过程的最大允许角度较远,所以(1116 nm→558 nm)和(1112 nm→ 556 nm)倍频过程的相位因子平方值很小(分别为6%和4%)。因此,选用 KTP 晶体作为倍频晶体时, 561 nm激光器不会受到1112 nm 及1116 nm 谱线振荡的干扰,从而很容易在光谱仪上观察到561 nm 单一 谱线输出。

5 结 论

利用 LD 端面抽运 Nd: YAG 晶体,通过 LBO 非线性晶体腔内倍频实现 561 nm 激光输出。实验结果表明,由于 LBO 晶体的允许角范围比较大,在使用 LBO 作为激光倍频晶体时容易出现 556 nm,558 nm 谱线和 561 nm 谱线相互竞争的现象。而采用相位允许角比较小的 KTP 晶体则激光器容易实现 561 nm 单一谱线输出。该实验研究对于谱线较密集、无法用镀膜参数来消除谱线振荡的激光器具有一定的参考价值。实验中,当 LD 抽运功率为 5 W 时,561 nm 最大输出功率为 123 mW,转换效率为 2.46%。转换效率比较低,原因主要有:Nd: YAG 晶体经过多次实验,高反射膜损坏比较严重,影响激光器的转换效率;LBO 晶体与散热块没有进行紧密接触,温度控制没有达到最优状态,影响了转换效率。因此,如果改用新的 Nd: YAG 晶体,对 LBO 晶体进行精确控温,按照 1123 nm 谐振优化谐振腔结构,一定可以提高激光器的转换效率。

参考文献

- 1 William Telford, Matilde Murga, Teresa Hawley. DPSS yellow-green 561 nm lasers for improved fluorochrome detection by flow cytometry[J]. Cytometry Part A, 2005, 68(1): $36 \sim 44$
- 2 Xiaoping Guo, Meng Chen, Gang Li *et al*.. Diode-pumped 1123-nm Nd: YAG laser[J]. *Chin. Opt. Lett.*, 2004, **2**(7): 402~404
- 3 Fuqiang Jia, Quan Zheng, Qinghua Xue et al.. Yellow light generation by frequency doubling of a diode-pumped Nd: YAG laser[J]. Opt. Commun., 2006, 259(1): 212~215
- 4 Cui Jinjiang, Tan Huiming, Wang Fan *et al.*. High power medical all-solid-state 561 nm yellow laser [J]. Laser & Optoelectronics Progress, 2012, **49**(1): 011401
- 崔锦江, 檀慧明, 王 帆 等. 大功率医用全固态 561 nm 黄光激光器[J]. 激光与光电子学进展, 2012, 49(1): 011401
- 5 C. Y. Li, Y. Bo, Y. T. Xu et al. 219.3 W CW diode-side-pumped 1123 nm Nd: YAG laser[J]. Opt. Commun., 2010, 283(14): 2885~2887
- 6 Zhichao Wang, Qinjun Peng, Yong Bo et al.. 60 W yellow laser at 561 nm by intracavity frequency doubling of a diodepumped Q-switched Nd: YAG laser[J]. Opt. Commun., 2012, 285(3): 328~330
- 7 C. Y. Li, Y. Bo, J. L. Xu *et al.*. Simultaneous dual-wavelength oscillation at 1116 and 1123 nm of Nd: YAG laser[J]. Opt. Commun., 2011, 284(19): 4574~4576
- 8 Gao Huanhuan, Gao Lanlan, Liu Hongbo et al.. Laser diode pumped continuous wave three-wavelength laser[J]. Chinese J. Lasers, 2010, 37(7): 1683~1687

高缓缓,高兰兰,刘宏博等.激光二极管抽运连续三波长固体激光器[J].中国激光,2010,37(7):1683~1687

9 Gao Lanlan, Tan Huiming, Wang Wei et al.. LD pumped Nd: YVO4 CW three-wavelength laser[J]. Chinese J. Lasers, 2009, **36**(7): 1749~1753

高兰兰, 檀慧明, 王 巍 等. LD 抽运 Nd: YVO4 连续 3 波长激光器[J]. 中国激光, 2009, 36(7): 1749~1753

10 Yao Jianquan, Xu Degang. Nonlinear Optical Frequency Conversion and Laser Tuning Technology[M]. Beijing: Science Press, 2007

姚建铨,徐德刚.非线性光学频率变换及激光调谐技术[M].科学出版社,2007